Analyzing the antibacterial effects of food ingredients: model experiments with allicin and garlic extracts on biofilm formation and viability of Staphylococcus epidermidis
نویسندگان
چکیده
To demonstrate different effects of garlic extracts and their main antibiotic substance allicin, as a template for investigations on the antibacterial activity of food ingredients. Staphylococcus epidermidis ATCC 12228 and the isogenic biofilm-forming strain ATCC 35984 were used to compare the activity of allicin against planktonic bacteria and bacterial biofilms. The minimal inhibitory concentration (MIC) and the minimum biofilm inhibitory concentration (MBIC) for pure allicin were identical and reached at a concentration of 12.5 μg/mL. MBICs for standardized garlic extracts were significantly lower, with 1.56 and 0.78 μg/mL allicin for garlic water and ethanol extract, respectively. Biofilm density was impaired significantly at a concentration of 0.78 μg/mL allicin. Viability staining followed by confocal laser scanning microscopy showed, however, a 100% bactericidal effect on biofilm-embedded bacteria at a concentration of 3.13 μg/mL allicin. qRT-PCR analysis provided no convincing evidence for specific effects of allicin on biofilm-associated genes. Extracts of fresh garlic are more potent inhibitors of Staphylococcus epidermidis biofilms than pure allicin, but allicin exerts a unique bactericidal effect on biofilm-embedded bacteria. The current experimental protocol has proven to be a valid approach to characterize the antimicrobial activity of traditional food ingredients.
منابع مشابه
Lavage with Allicin in Combination with Vancomycin Inhibits Biofilm Formation by Staphylococcus epidermidis in a Rabbit Model of Prosthetic Joint Infection
BACKGROUND AND AIM The present anti-infection strategy for prosthetic joint infections (PJI) includes the use of antibiotics and surgical treatments, but the bacterial eradication rates are still low. One of the major challenges is the formation of biofilm causing poor bacterial eradication. Recently it has been reported that allicin (diallyl thiosulphinate), an antibacterial principle of garli...
متن کاملبررسی اثر آلیسین و نانوذرات نقره بر عفونت پوستی ناشی از استافیلوکوکوس اورئوس در مدل موشی
Background and Objective: Staphylococcus aureus is an important pathogen causing a wide range of infections in hospitals and is known due to its resistance to antibiotics. Novel methods of nanotechnology and the effective combination of different antimicrobial mechanisms can be compelling approaches to treat infectious diseases. The aim of this study was to investigate the antimicrobial effect ...
متن کاملEffect of allicin on the production of polysaccharide intercellular adhesin in Staphylococcus epidermidis.
AIMS Polysaccharide intercellular adhesin (PIA) is the main agglutination agent in the biofilm forming strain Staphylococcus epidermidis. To find an explanation for the observed inhibition of biofilm formation by allicin, we studied the effect of allicin on PIA production in samples treated with sub MIC doses of allicin and compared this with a control culture without allicin. METHODS AND RES...
متن کاملبررسی اثـر نانـوذرات نقـره بر بیـوفیلمهای ناشی از استافیلوکوکوس اپیدرمیدیس
Background and Objective: Staphylococcus epidermidis produces extracellular polysaccharide which is known as a biofilm. Biofilm is highly effective in establishing of this bacterium infections and can be formed on medical devices that are used in the body. The purpose of this study was to evaluate the effects of silver colloidal nanoparticles on bacterial growth and biofilm form...
متن کاملPlasma can reduce Staphylococcus epidermidis biofilm formation on medical polymers
Medical polymers, such as urinary catheters are widely used biomaterials. One of the main problem for using the urinary catheters is biofilm formation on their surface, when they are used in a long time in the body. Virulence and pathogenicity of Staphylococcus epidermidis is often enhanced when growing as a biofilm. Many techniques have been presented to reduce the biofilm formation by surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015